No need for a power stroke in ISWI-mediated nucleosome sliding.

نویسندگان

  • Johanna Ludwigsen
  • Henrike Klinker
  • Felix Mueller-Planitz
چکیده

Nucleosome remodelling enzymes of the ISWI family reposition nucleosomes in eukaryotes. ISWI contains an ATPase and a HAND-SANT-SLIDE (HSS) domain. Conformational changes between these domains have been proposed to be critical for nucleosome repositioning by pulling flanking DNA into the nucleosome. We inserted flexible linkers at strategic sites in ISWI to disrupt this putative power stroke and assess its functional importance by quantitative biochemical assays. Notably, the flexible linkers did not disrupt catalysis. Instead of engaging in a power stroke, the HSS module might therefore assist DNA to ratchet into the nucleosome. Our results clarify the roles had by the domains and suggest that the HSS domain evolved to optimize a rudimentary remodelling engine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI.

The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone-DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underl...

متن کامل

ISWI Remodelling of Physiological Chromatin Fibres Acetylated at Lysine 16 of Histone H4

ISWI is the catalytic subunit of several ATP-dependent chromatin remodelling factors that catalyse the sliding of nucleosomes along DNA and thereby endow chromatin with structural flexibility. Full activity of ISWI requires residues of a basic patch of amino acids in the N-terminal 'tail' of histone H4. Previous studies employing oligopeptides and mononucleosomes suggested that acetylation of t...

متن کامل

Crosstalk within a functional INO80 complex dimer regulates nucleosome sliding

Several chromatin remodellers have the ability to space nucleosomes on DNA. For ISWI remodellers, this involves an interplay between H4 histone tails, the AutoN and NegC motifs of the motor domains that together regulate ATPase activity and sense the length of DNA flanking the nucleosome. By contrast, the INO80 complex also spaces nucleosomes but is not regulated by H4 tails and lacks the AutoN...

متن کامل

Nucleosome Movement by CHRAC and ISWI without Disruption or trans-Displacement of the Histone Octamer

The chromatin accessibility complex (CHRAC) belongs to the class of nucleosome remodeling factors that increase the accessibility of nucleosomal DNA in an ATP-dependent manner. We found that CHRAC induces movements of intact histone octamers to neighboring DNA segments without facilitating their displacement to competing DNA or histone chaperones in trans. CHRAC-induced energy-dependent nucleos...

متن کامل

The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome

Chromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. Yet how chromatin remodelers recognize and respond to distinct chromatin environments surrounding nucleosomes is poorly understood. Here, we use Lac repressor as a tool to probe how a DNA-bound factor influences action of the Chd1 remodeler. We show that Chd1 preferentially shifts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EMBO reports

دوره 14 12  شماره 

صفحات  -

تاریخ انتشار 2013